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Setup and bullet notation

Setup

X a fixed Banach space.

F = Γ(L2(R+; k)) for a fixed Hilbert space k.

S ⊂ L2(R+; k) the set of all k-valued step functions.

E = Lin{ε(f ) : f ∈ S}.

Recall that F = F[0,t)⊗F[t,∞) and ∇tε(f ) = f (t)⊗ ε(f ) ∈ k⊗F .

Notation

For P ∈ B(〈F[0,t)|;A) and Q ∈ B(〈F[t,∞)|;A),

P • Q := m ◦ (P⊗̂Q) ∈ B(〈F|;A),

where m is the operator A⊗̂A → A induced by multiplication in
A, using 〈F[0,t)|⊗̂〈F[t,∞)| = 〈F[0,t) ⊗F[t,∞)| = 〈F|.
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CI identification

Natural CI isomorphisms

U,V,W concrete operator spaces
H Hilbert space

W ⊗M |H〉 ∼= CB(〈H|; W).

CB(U; CB(V; W)) ∼= CB(V; CB(U; W)).

Viewpoint on Standard Mapping Processes on A

(kt)t≥0 in CB(A; A⊗M B(F)) ⊂ L
(
E ; CB(A; A⊗M |F〉)

)
= L

(
E ; CB

(
〈F|; CB(A)

)) .

QS Processes in Banach space

Families (mt)t≥0 in L(E ; B(〈F|; X)).
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Vector processes: ε(f )-adaptedness

Let f ∈ L2(R+; k).

Definition

A family X = (Xt)t≥0 in B(〈F|; X) is an ε(f )-adapted vector
process in X if it satisfies

t 7→ Xt(〈ξ|) weakly measurable.

Xt = X (t)⊗̂R
(
|ε(f[t,∞))〉

)
, where X (t) ∈ B(〈F[0,t)|; X).

Proposition

For a family X = (Xt)t≥0 in B(〈F|; X), TFAE:

1. X is an ε(f )-adapted vector process in X.

2. ∀ω∈X∗ Xω := (Xω
t = ω ◦ Xt)t≥0 defines a “standard”

ε(f )-adapted vector process in 〈F|∗ = F .
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Vector processes: Skorohod integration

Let f ∈ L2(R+; k).

Definition

An ε(f )-adapted vector process X = (Xt)t≥0 in B(〈k⊗F|; X) is
Skorohod-integrable if

∀ε∈E t 7→ Xt

(
〈∇tε|

)
locally Pettis-integrable.

∀t≥0 supω∈Ball[X∗]

∫ t
0 ‖ω ◦ Xs‖2 ds <∞.

Now define SX
t X in L(〈E|; X) by duality:

(SX
t X )(〈ε|) :=

∫ t
0 Xs

(
〈∇s(ε)|

)
ds.

Key fact

ω
(

(SX
t X )(〈ε|)

)
= 〈ε,St(Xω)〉 (ω ∈ X∗).
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Vector processes: (SX
t X )t≥0 as ε(f )-adapted vector process

Let f ∈ L2(R+; k).

Properties

Let X = (Xt)t≥0 be a Skorohod-integrable ε(f )-adapted vector
process. Then

1. (SX
t X )t≥0 defines an ε(f )-adapted vector process in X.

2. ‖SX
t X − SX

r X‖ ≤ Cf ,[r ,t) supω∈Ball[X∗]

( ∫ t
r ‖ω ◦ Xs‖2 ds

)1/2
.

3. ∀ω∈X∗ ω ◦ (SX
t X ) = St(Xω).

4. If X is locally bounded then t 7→ SX
t X is locally Hölder

1/2-continuous.
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QS process in X

Definition

A family m = (mt)t≥0 in L
(
E ; B(〈F|; X)

)
is a QS process in X if

it satisfies

1. ∀ε∈E, ω∈X∗, ξ∈F t 7→ ω
(

mt,ε(〈ξ|)
)

is measurable.

2. mt,ε(f ) = mε(f )(t)⊗̂R
(
|ε(f[t,∞))〉

)
,

where mε(f )(t) := mt,ε(f[0,t))

∣∣
〈F[0,t)|

.

Example (QS Process in B(h))

For a “standard” QS process X = (Xt)t≥0 in B(h⊗F).

mt,ε(〈ξ|) := (Ih ⊗ 〈ξ|)Xt(Ih ⊗ |ε〉)

defines a QS process in our (wider) sense.
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QS cocycles in A

Let A be an unital Banach algebra.

Definition

A QS process m in A is a QS cocycle if it satisfies

mr+t,ε(f ) = mε(f )(r) • σr

(
mt,ε(S∗r (f[r,∞)))

)
,

m0,ε(〈ξ|) = 〈ξ, ε〉1A.

Associated semigroups {Pc,d : c , d ∈ k} of m:

Pc,d
t := mt,ε(d[0,t))(〈ε(c[0,t))|).

m is Markov-regular if each Pc,d is norm continuous.

m is adjointable if there is a QS cocycle m† in A† satisfying

m†t,ε(〈ε
′ |) =

(
mt,ε′ (〈ε|)

)†
.
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QSDE

Set k̂ = C⊕ k

Theorem

For γ ∈ L(k̂; B(〈k̂|;A)), the QSDE

dmt = mt .γ dΛ(t), m0,ε(〈ξ|) = 〈ξ, ε〉1A

has a unique solution, denoted mγ . It is given by a form of Picard
iteration:

mγ
t,ε =

∑
n≥0

Λ
(n)
t (γ•n)ε ∈ B(〈F|;A).

Properties:

1. t 7→ mγ
t,ε is locally Hölder 1/2-continuous.

2. mγ is a Markov-regular QS cocycle.

3. If γ is adjointable then mγ is also adjointable and

(mγ)† = mγ†
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2. mγ is a Markov-regular QS cocycle.

3. If γ is adjointable then mγ is also adjointable and

(mγ)† = mγ†
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Stochastic generators for QS cocycles

Theorem

Let m be an adjointable, Markov-regular QS cocycle in A such that

t 7→ mt,ε and t 7→ m†t,ε are locally Hölder 1/2-continuous.

Then there is γ ∈ L(k̂; B(〈k̂|;A)) such that

m = mγ .
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Idea of the Proof

1. For fixed w ∈ C, d ∈ k, define

γ1

(
w
d

)
∈ B(〈C|;A) and γ2

(
w
d

)
∈ B(〈k|;A) by

γ1

(
w
d

)
: 〈z | 7→ z

(
β0,d + (w − 1)β0,0

)
, and

γ2

(
w
d

)
:= st. limt→0

1√
t

(
mt,ε(d[0,t)) −m0,ε(d[0,t))

)
◦ Et

+ (w − 1) st. limt→0
1√
t

(
mt,ε(0) −m0,ε(0)

)
◦ Et ,

where Et is the isometry 〈c | ∈ 〈k| 7→ 1√
t
〈c[0,t)| ∈ 〈F|.

2. Set

γ(η) = [γ1(η) γ2(η)] ∈ B(〈k̂|;A) (η ∈ k̂).
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